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The effect of convex surface curvature on turbulent 
boundary layers 
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The response of a well-developed turbulent boundary layer to suddenly applied 
convex surface curvature is investigated, using conditional-sampling techniques so 
that the turbulent and non-turbulent regions of the flow can be clearly distinguished. 
The conclusion of this and the companion paper by Hoffmann, Muck & Bradshaw 
(1985) is that the effects of convex (stabilizing) and concave (destabilizing) curvature 
on boundary layers - and presumably on other shear layers - are totally different, 
even qualitatively: mild convex curvature, with a radius of curvature of the order 
of 100 times the boundary-layer thickness, tends to attenuate the pre-existing 
turbulence, apparently without producing large changes in statistical-average eddy 
shape, while concave curvature results in the quasi-inviscid generation of longitudinal 
(‘Taylol-Gortler ’) vortices, together with significant changes in the turbulence 
structure induced directly by the curvature and indirectly by the vortices. 

From the point of view of calculation methods, the implication is that, although 
stabilizing and destabilizing curvature are connected by a common dimensional 
analysis, the differences are such that the one cannot be regarded as a useful guide 
to the treatment of the other. Specifically, rates of change of turbulence-structure 
parameters with curvature parameter are likely to be nearly discontinuous at  zero 
curvature, and in particular the time of response of a turbulent boundary layer to 
convex curvature, implying mere attenuation, is very much less than the time of 
response to concave curvature, implying reorganization of the eddy structure. 

1 Introduction 
The paper is one of a series on complex turbulent flows (defined as shear layers 

with complicating influences like distortion by an extra rate of strain or interaction 
with another turbulence field). A previous paper on curvature in the series is that 
of Smits, Young & Bradshaw (1979) describing an experiment on strongly curved 
boundary layers, which was conceived at  a time when it was believed that the effects 
of mild surface curvature on boundary layers were relatively well understood. The 
present paper is a continuation of the work of Meroney & Bradshaw (1975), and uses 
the same test rig in which a well-developed low-speed turbulent boundary layer 
encounters a longitudinally curved surface with a radius of curvature about 100 times 
the initial thickness of the boundary layer. That is, the boundary layer is perturbed 
by a step increase in curvature, as distinct from the ‘impulse ’ of curvature (i.e. a sharp 
bend) in the experiment of Smits et al.; the total turning angle in the present 
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experiment (see figure 1 )  is roughly the same as in the sharp-bend experiment. As 
in the work of Meroney & Bradshaw and of Smits et al., we have considered both 
convex and concave curvature, and perhaps our most important conclusion, based 
upon our own work and that of others, is that  there is practically no useful connection 
between the two cases. We have signalized this by presenting the work in two papers, 
the work of Hoffmann, Muck & Bradshaw (1985) on concave curvature being referred 
to hereinafter as 11. The implication is that allowances for the effect of streamline 
curvature in calculation methods for turbulent flow should be formulated separately 
for the stabilizing and destabilizing cases. The same conclusion appears to  apply to 
the stabilizing and destabilizing effects of body forces such as buoyancy : empirical 
correlations in the meteorological literature are usually algebraically different for each 
sign of buoyancy. (The simpler formulae even have discontinuities of slope a t  
zero buoyancy parameter.) The effects of ‘stabilizing ’ and ‘destabilizing ’ curvat- 
ure on laminar flows are of course totally different : stabilizing curvature has a small, 
O(S/R) ,  effect on Tollmien-Schlichting waves, while destabilizing curvature leads to 
a new instability mode, Taylor42ortler vortices. 

It is well known that the effects of streamline curvature or other ‘extra rates of 
strain ’ on turbulent shear layers are an  order of magnitude larger than would appear 
from the explicit metric terms which appear when the mean-flow and turbulence 
transport equations are written in the semi-curvilinear coordinates appropriate to  
distorted shear layers. The computations presented a t  the 1980-81 Stanford meeting 
on Complex Turbulent Flows (Kline, Cantwell & Lilley 1982) showed that, contrary 
to some previous claims, none of the calculation methods was capable of reproducing 
the effects of streamline curvature without the introduction of explicit correction 
terms. The two-point-correlation method of Jeandel et al. (see Kline et al., vols. 2 and 
3) may be an exception, but it was tested only for the allied case of rotation in a 
homogeneous turbulent flow. Kline (see Kline et al.) has strongly argued that it is 
neither immoral, nor necessarily imprudent, to allow the empirical coefficients in a 
turbulence model to depend upon the type of flow being calculated, providing that 
the flow-identification process and the behaviour of the coefficients can be specified 
beforehand (i.e. in a computer program) so that intervention by the user of the 
calculation method is not required. (Adjustment of quantitative parameters according 
to results of qualitative or semi-quantitative pattern recognition - in the broadest 
sense of the latter term - is the basis of so-called ‘expert systems’.) Here we need 
to consider only a mild version of the principle of ‘zonal modelling’, requiring some 
of the empirical functions or coefficients in a turbulence model to depend on the sign 
of the curvature. Although the present results refer specifically to turbulent boundary 
layers, i t  is probable that similar arguments would apply qualitatively to other curved 
shear layers. 

Curved shear layers may exhibit near-equilibrium behaviour if the ratio of 
shear-layer thickness to streamline curvature is independent of downstream distance, 
but the non-equilibrium state, of which an extreme example is suddenly applied 
curvature, is equally important in practice. This introduces the time of response of 
a turbulent flow to surface curvature, as well as the asymptotic magnitude of 
response. At the phenomenological level, the most spectacular difference between the 
response of a turbulent boundary layer to a concave curvature and a convex 
curvature is that  in the latter case the response is much more rapid, as is shown by 
a comparison of the present results with those of 11. A general review of curvature 
effects was given recently in this journal by Gillis & Johnston (1983). 

Several other workers (e.g. So & Mellor 1973; Ramaprian & Shivaprasad 1978; 
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Gillis et al. 1980; Gillis & Johnston 1983) have reported measurements of the Reynolds 
stresses in convex-curved boundary layers. Ramaprian & Shivaprasad measured 
triple products, but used nonlinearized constant-current hot wires so that the results 
are not reliable; and at  the time that the present work was started the only 
experiment that included triple-product measurements, so that all the terms in the 
Reynolds-stress transport equation could be deduced, was the work of Castro & 
Bradshaw (1976) on a stably curved mixing layer with a very short region of 
curvature. More recently, Gibson, Verriopoulos & Vlachos (1984) have measured 
velocity and temperature-fluctuation statistics up to third order in a rig similar to 
the present one. It seemed appropriate to extend the work of Meroney & Bradshaw 
to include triple-product measurements and conditional sampling, in order to provide 
comprehensive documentation of a mildly curved boundary layer in which the 
stabilizing effects of curvature significantly attenuate the turbulence, but are not 
strong enough to annihilate the shear stress in the outer part of the layer as found 
in some of the strongly curved experiments. The measurements were not aimed at  
the improvement of any particular calculation method, or even a class of calculation 
methods, but the paper includes a discussion of the implications for turbulence 
modelling in general. 

2. Apparatus and techniques 
The measurements were made in the blower tunnel rig used by Meroney & 

Bradshaw (1975), shown in figure 1 (a). The convex surface has a radius of curvature 
of 2410 mm. The working section was 762 mm wide and 127 mm high: the flow speed 
at the start of the working section was about 33 m s-l, and increased slightly down 
the length of the working section owing to boundary layer growth. The surface-pressure 
coefficient, referred to conditions a t  the working-section entrance, is shown in 
figure 1 (b).  The free-stream turbulence level at the working-section entrance was 
about 0.1 %. A 0.7 mm diameter trip wire was installed on each surface at the 
working-section entrance. The boundary-layer thickness at the start of the curved 
section is about 22 mm (U ,  e/v = 5000,6/R = 0.009), increasing to about 33 mm at 
exit on the convex side and about 45 mm on the concave side: that is, the thickness 
of the free-stream core was always at least 1.5 times the thickness of the convex-surface 
boundary layer, and the ratio of tunnel width to convex-surface boundary-layer 
thickness was always at least 20. There is a short region of fairly strong pressure 
gradient at the start of curvature but, unlike Gillis & Johnston, we made no attempt 
to eliminate this transient effect or the slight favourable pressure gradient down the 
working-section length as a whole, because (i) the effects of small mean-pressure 
gradients are fairly well understood and are quite easily accounted for in most 
calculation methods, and (ii) the mean-pressure gradients do not appear explicitly 
in the transport equations for the Reynolds stresses, so that any effects of pressure 
gradient on the Reynolds stresses are indirect. 

Mean velocities were measured with conventional Pitot tubes, being deduced from 
the pressure difference between the Pitot tube and the wall static-pressure tapping 
by the method of So & Mellor (1972), which assumes that the normal pressure gradient 
is equal to puZ/(y+ R), where U is the local mean velocity and R is the radius of 
curvature of the surface. Use of surface curvature rather than local streamline 
curvature is consistent with the customary neglect of normal pressure gradient in a 
boundary layer on a flat surface. No attempt was made to measure static pressure 
within the stream, because of the large effects of turbulence on static-pressure probes 
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FIQURE 1.  Experimental arrangement. (a) Side view of test section, showing symbols for figures 
5-14. Curvature starts at x = 0; width 762 mm, convex-wall radius 2410 mm. ( b )  Streamwise 
distribution of the wall static pressure: Upw is ‘potential velocity at wall’ defined by 
(P-Po)l lgu;:  = ~ - ( ~ p w / ~ o ) z .  

(Christiansen & Bradshaw 1981). Given the static pressure, we can define a pseudo- 
potential-flow velocity Up by ipuZ, = Pe-p,  where Pe is the free-stream total 
pressure. The customary definitions of displacement and momentum thickness for 8 
curved surface result from replacing the usual free-stream velocity U,  by Up in the 
definition, and the simplest definition of skin-friction coefficient is in terms of the 
value of Up at the surface, Upw. Alternatively the velocity can be based on surface 
static pressure and measured total pressure. The differences are small, and the latter 
definition should be consistent with a prediction method that ignores normal pressure 
gradients and accepts the surface static pressure as the input. Surface shear stress 
was deduced from Preston-tube readings, and, equivalently, by fitting a portion of 
the mean-velocity profiles to the logarithmic law of the wall. 

Hot-wire measurements were made with constant-temperature DISA 55D01 
anemometers, with 5 p m  diameter platinum wires soldered on to Prosser 6525 
X-probes. Temperature fluctuations were measured, solely for intermittency measu- 
rement, with 1 pm diameter platinum wires, operated a t  a constant current of about 
1 mA and compensated for thermal inertia by a home-made amplifier circuit. 
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FIGURE 2. Mean-velocity profiles. (a) Linear scales. (b )  Semilogarithmic scales : straight line is 
logarithmic law for plane flow, U/u, = (1/0.41) In (u,y/v)+5.2.  0, +, x = - 145 mm, cf, and 
cf, min; A, 85; X I  390; n ,  696; 0, 1050. 

Resistance-thermometer compensation was set by observing the output trace in an 
intermittently hot region of the flow, and adjusting the electronics so that, at  the 
end of a hot 'burst', the temperature 'decreased to the 'cold' level as rapidly as 
possible without overshoot. For more details of the techniques and the intermittency 
algorithm see Weir, Wood & Bradshaw (1981). Heat was introduced into the 
boundary layer by means of heated wires near the roof and floor of the settling 
chamber of the wind tunnel, the thermal wakes of the wires being entrained into the 
boundary layers quite close to the start of the working section. Temperature 
differences within the boundary layer were between 1.5 and 3 "C. 

Fluctuating signals from probes carrying two cross wires and one temperature wire 
were recorded simultaneously on analog magnetic tape, and later transcribed to 
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FIGURE 3. Skin-friction coefficient, cf = r,&uZ,,. 

digital magnetic tape for processing on the College computer. Overall frequency 
response was at  least 10 kHz. The data-analysis program allowed for the effect of 
temperature fluctuation on the velocity signal, the effect of velocity fluctuations on 
the temperature wire being negligible. 

Details of the measurement techniques in general, and of calibration techniques 
and precautions to reduce errors in particular, are given by Muck (1982) ; microfiche 
copies of this thesis, and magnetic tapes of the data, are available from Imperial 
College. The experiment is not an especially demanding one as far as hot-wire 
techniques are concerned, and the general accuracy is demonstrated by the agreement 
of pre-curvature results - for, say, R,, (figure 5e)  - with existing data. Absolute 
accuracy is probably of the order usually attainable in hot-wire measurements, i.e. 
better than 10 % for Reynolds stresses, better than 15 % for triple products. 

3. Results 
The measurement positions on the convex and concave surfaces (figure 1 a)  are on 

the same radial lines, but necessarily at different values of x measured along each 
surface from the start of the curvature. Only a selection of the results is given here, 
as a support for the discussion. For details see Muck (1982). 

Figure 1 ( b )  shows the pressure distributions on the convex and concave surfaces : 
note that ( UPw/U,J2, where U, is the speed a t  entrance to the working section, equals 
1 - c p  with c p  based on f p q .  Pressure gradients are small except near the start of 
curvature. The mean-velocity profiles are plotted as true U/Upw in figure 2: c ~ , ~ ~ ~  
and ce,min refer to different spanwise stations on the concave surface (see 11). The 
profiles plotted in semilogarithmic form in figure 2 (b )  follow the universal logarithmic 
law accurately at  small y, but then diverge from it at a value of y which decreases 
with increasing downstream distance. This is an immediate indication of the rather 
slow response of the boundary layer to the sudden imposition of curvature: recall 
that R is constant, while u, decreases only slowly with increasing x, so that any 
curvature parameter based on inner-layer variables also changes only slowly with x. 
This does not necessarily imply slow response of small-scale inner-layer turbulence, 
because the point at  which the velocity profile leaves the logarithmic law depends 
on the outer-layer turbulence. The mean-velocity profiles do follow the logarithmic 
law in slope (whereas the deduction of u, from a log-law fit merely requires the 
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measured profile to intersect the universal profile somewhere). This supports the 
intuitive feeling that if y / R ,  and therefore the ratio of eddy size to R, is small enough 
the effects of curvature on the turbulence structure will be negligibly small. The 
skin-friction coefficient, based on the surface value of the potential-flow velocity Up 
defined above, is shown in figure 3, and the boundary-layer thickness, defined as the 
distance from the surface at which the velocity is 0.995 of the potential-flow velocity, 
is shown in figure 4 (a) .  Expected values for constant-pressure boundary layers on 
flat surfaces are given by the approximate formula cf = 0.026 (Ue8/u)-i, which gives 
cf = 0.0028 at the last station, compared to 0.0023. Figure 4 also shows the 
momentum thickness 8, the shape factor H = S*/8 and the ‘wake parameter’ Z7, at 
slightly different values of x from cf and S,,,. Here Z7 is defined in terms of the 
divergence from the universal law of the wall, without any curved-surface correction. 
lnsertion of measured quantities into the two-dimensional momentum-integral 
equation shows a small imbalance, less than 10 yo of the cf term, which is attributable 
to lateral divergence (the discrepancy is in the wrong sense to be explained by 
secondary flow near the sidewalls, which in any case appears to be small). This 
imbalance might need to be taken into account in comparison with calculations of 
mean-flow quantities but is far too small to affect turbulence-structure parameters. 

Reynolds stresses are shown in figure 5. In all cases, the stress decreases rather 
rapidly from the pre-curvature station to the station 85 mm (about 46) after the start 
of the curvature, and thereafter decreases more slowly, roughly following the slow 
decrease of surface shear stress. Our results differ noticeably from those of Gibson 
et al. The discrepancy at the pre-curvature stations is mainly in 3: their results agree 
fairly closely with the classical measurements of Klebanoff (1955) whereas ours show 
the smaller difference between 3 and 2 found in most of the more recent 
experiments. At later stations the results diverge further, because our S/R was rather 
larger than theirs. (The simplest parameter to quote is the ratio of x to R at the start 
of the curvature: 0.5 in the work of Gibson et al.,  0.6 in ours.) Note that SIR, or any 
other curvature parameter, increases slowly with x ,  so the results imply that 
equilibrium with the local curvature is achieved by about 46 after the start of 
curvature: for a further discussion of response times see paper 11. The most 
noteworthy feature of the response to convex curvature is the increase in 2, relative 
to the other intensity components, near the outer edge, accompanied by a slight 
relative decrease in 2 in the main part of the boundary layer. The ratios are plotted 
by Muck: the trend in vz /uz  is similar to that of Gibson et at. and somewhat less 
pronounced than in Gillis & Johnston’s experiment, and the small decrease near the 
outer edge is in contrast with the large increases fmnd in the concave case in paper 11. 
The shear correlation coefficient and the stress/intensity ratio, figure 5(e ,  f), are 
barely reduced by curvature, except for a significant decrease in the outer part of 
the boundary layer. Here the results agree fairly closely with those of Gibson et al. : 
their plateau value of R,, on a flat surface is about 0.47 while ours is about 0.43, 
the usual textbook/consensus value being 0.45. This suggests that the two 
experiments are reasonably consistent and that the differences in the measured 
intensities are mostly the effect of differences in curvature parameter. 

Figure 6 shows the effect of streamline curvature on the mixing length and eddy 
viscosity, non-dimensionalized by S,,, and Up,  S* respectively, as usual. It must be 
remembered that the mixing length and eddy viscosity are not turbulence parameters, 
but ratios of turbulence quantities to the mean-flow quantity aU/ay: therefore the 
decrease in mixing length after the application of curvature is attributable partly to 
the decrease in shear stress shown in figure 5 and partly to the increase in aU/ay shown 

_ _  
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FIGURE 6. Mixing length and eddy viscosity: see figure 1 (a) for symbols. (a) Mixing length Zm/8B96. 
( b )  Eddy viscosity lossm/( Up,&*): dotted line shows 'standard' value em = 0.0168Ue8*. 

in figure 2. The reductions in mixing length and eddy viscosity are largest in the outer 
part of the boundary layer, and the streamwise development is again virtually 
complete by the third measuring station, a t  x = 390 mm about 156 from the start 
of curvature. It is not very useful to correlate the results in terms of local-curvature 
parameter - as shown by Muck, the ' Richardson number ' changes very little once 
the curvature is established - but a typical Richardson number at y/6 = 0.5 is about 
0.03, and the observed reduction in 1/6 to  about 0.65 of its upstream value a t  this 
y/6 corresponds to  the usual factor of 10 connecting curvature parameter and 
shear-stress response. The fractional decrease in mixing length found by Gibson et 
al. is slightly less, their curvature parameters being slightly less also. 
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FIGURE 7. Turbulent transport velocities. (a) For turbulent kinetic 
energy V,lUpw. (a) For shear stress, V,/Upw. 

The triple products of velocity fluctuations are again reduced by convex curvature, 
by a factor of about 0.5 in mid-layer: in the experiment of Gibson et al. the reduction 
is slightly less and even the flat-surface values are typically 20% higher. The 
turbulent ‘transport ’ velocities show significantly smaller effects of curvature than 
the eddy diffusivities. If diffusion by pressure fluctuations is neglected, the transport 
velocities for turbulent kinetic energy and shear stress can be approximated 
respectively by V, = q2v/q2, where q2 = u2 + v2 + w2, and V, = uv2/*. Measurements 
are shown in figure 7 : profiles of individual triple products are given by Muck. The 
decrease with increasing downstream distance over the main part of the boundary 
layer is only just significant, in contrast to  the eddy diffusivities, which decrease as 

_ _  - 
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much as the triple products themselves. However, the decreases near the outer edge 
are large, with a slow start followed by a rapid drop. The decrease in V, is particularly 
significant when one remembers that UV itself is attenuated near the outer edge of 
the boundary layer, both absolutely and in comparison with the mean-square 
intensity. However, even the large readjustment of shear-stress transport velocity 
seems to be essentially complete by the third measurement station, about 15 
boundary-layer thicknesses from the start of the curvature, and the transport 
velocity of turbulent kinetic energy seems to react even more rapidly. The u-component 
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and w-component skewness factors seem to react to the application of curvature rather 
more slowly than the transport velocity. The question of which is the more 
meaningful form of dimensionless triple product depends on the purpose in view, but 
it is clear that interpretations of flow behaviour should not be based on only one set 
of parameters. 

Figure 8 shows the eddy diffusivities of turbulent energy and of shear stress. Unlike 
the eddy diffusivity of momentum ('eddy viscosity ') these are genuine turbulence 
parameters, but would be expected to be simply behaved only if all the turbulent 
eddies were small compared with the width of the flow (corresponding to the usual 
condition of validity of gradient-diffusion concepts in the kinetic theory of gases that 
the mean free path shall be small compared with the flow width). The eddy 
diffusivities seem to be more affected by curvature than the transport velocities shown 
in figure 7, although the eddy-diffusivity formulation makes the large percentage 
changes in the outer part of the boundary layer less obvious to the eye. _ _  Gibson et 
al. show that the diffusivities of kinetic energy and shear stress scale on q2 v2/e even 
in the curved region. Values given by Gibson et d. agree with ours to within 10-15 %, 
more closely than the raw triple products, and the same appears to be true of the 
transport-velocity data. 

The flatness factors of u, w, and w remain close to the Gaussian value of 3 over the 
inner half of the boundary layer even after the start of curvature, but are strongly 
reduced by curvature in the outer part of the boundary layer as seen for the 
u-component flatness in figure 9. Once more, the adjustment seems to be virtually 
complete by the third measurement station. It will be seen below that the reduction 
in flatness factor is caused by an increase in the ratio of fluctuation intensity in the 
irrotational flow to that in the turbulent region, rather than by a change in 
intermittency (recall that, if irrotational-zone fluctuations are negligible and the 
probability distribution within the turbulent regions is exactly Gaussian, the flatness 
faactor F is related to the intermittency factor y by F = 3/y). 
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FIGURE 10. Intermittency factor y .  

Figure 10 shows the intermittency factor, deduced from the on-off nature of the 
temperature-fluctuation records. ‘ Hot ’ regions are counted as turbulent and ‘ cold ’ 
regions as irrotational: the ratio of the diffusivity of vorticity to that of heat, i.e. the 
Prandtl number, is near unity and the Reynolds number is high. There is very little 
effect of curvature except for y/S > 1 where the decrease appears to be significant. 
The lower intermittency a t  the first measuring station after the onset of curvature 
was repeatable, and does not seem to  arise from inaccurate deduction of So,, from 
the pseudo-velocity plot as such, but may possibly be due to inadequacy of the simple 
‘centrifugal’ formulae for normal pressure gradient close to the start of curvature, 
leading to errors in the deduced velocity profile and thus to errors in S,,,. 

Conditionally sampled mean-velocity components are presented by Muck and will 
not be shown here: the main feature of interest is that the difference between the 
irrotational (‘ cold ’)-zone V-component mean velocity and the conventional-average 
V increases with increasing distance downstream, although turbulent activity in 
general is decaying. 

The assessment of conditionally sampled turbulence measurements depends on the 
baseline used for fluctuation measurements. As in previous papers we chose the 
conventional-average velocities as baselines for the measurement of fluctuations in 
both the turbulent and the irrotational regions: the more common practice of 
measuring fluctuations about the average velocity for the zone concerned seems to 
us to be misguided, because, if the intermittent region consisted of alterations 
between effectively constant values of velocity in the ‘turbulent ’ and ‘irrotational ’ 
regions, all the averages so defined would be zero! In fact, a case can be made for 
measuring - say - turbulent-zone fluctuations with respect to the irrotational-zone 
average velocity, since the turbulent bursts are indeed excursions from the non- 
turbulent background flow. Use of conventional-average velocity as a baseline has 
the great advantage that, for any statistical-average turbulence quantity Q (such as 
a mean-square intensity), we have the relation 
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where Q is the conventional average and QH and Qc are the turbulent and 
non-turbulent (irrotational) zonal averages, or the ' hot ' and ' cold ' zonal averages 
for short. We refer to the zonal averages multiplied by y or (1 - y )  as the zonal 
' contributions ' to the conventional-average turbulence quantity. Clearly, hot-zone 
contributions can be deduced from conventional averages and cold-zone contributions, 
the latter being rather small in cases like the present one : therefore, only cold-zone - i.e. 
irrotational-zone - contributions to the conventional-average turbulence quantity 
need to be presented here. The ratios of the cold-zone Reynolds stresses to the hot-zone 
Reynolds stresses are shown in figure 11. Values for small y may not be trustworthy, 
because when y tends to unity even small errors in intermittency determination will 
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grossly contaminate the cold-zone averages with hot-zone fluid, so that hot-zone and 
cold-zone averages become equal experimentally if not in truth. 

The reduction of the cold-zone contributions to the total Reynolds stresses by 
curvature is larger than for conventional averages (figure 5 )  except near the outer 
edge. The cold-zone contributions to the normal stresses, if not to the shear stress, 
still seem to be decreasing with increasing x at the last measurement station, in 
contrast to the conventional-average Reynolds stresses. The increase in cold-zone 
average Reynolds stresses, compared to hot-zone averages, is unmistakable in the 
outermost part of the layer. The conventional-average velocity is used as a baseline 
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for all fluctuations, so that, if the velocity simply alternated between a constant 
cold-zone value and a (different) constant hot-zone value, then the ratio of 
mean-square cold-zone fluctuations G, say, to the corresponding hot-zone mean- 
square fluctuation would be simply y 2 / ( l - y ) 2 .  An increase in cold-to-hot ratio, as 
shown in figure 11, could therefore be caused entirely by an increase in intermittency 
in the outermost part of the boundary layer, for which there is some slight evidence 
in figure 10. However, the fractional increases in cold-zone average Reynolds stresses, 
particularly inw,  are quite large, and suggest that convex - i.e. stabilizing - curvature 
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may possibly lead to wave motions in the irrotational region, which may be called 
‘centrifugal waves’ by analogy with the usual term ‘gravity waves’. Certainly, the 
measurements of Castro & Bradshaw (1976) on a stably curved mixing layer showed 
some evidence for strong, and possibly wave-induced, irrotational fluctuations on the 
high-velocity side of the mixing layer. Wave-induced fluctuations will not necessarily 
obey the same modelling laws as (rotational) turbulence, and may therefore confuse 
modellers if not recognized. However, the effects on conventional-average turbulence 
parameters arc probably negligible a t  small values of S/R like those in the present 
experiment,. 
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The effect of streamline curvature on the cold-zone triple products, shown in 
figure 12, is somewhat curious. The u-component skewness in the cold zone is very 
little altered by surface curvature: it falls from the value of + 1 expected for y = 1 
according to the above-mentioned ' square-wave ' model of turbulence and approaches 
the conventional average as y tends to zero. (This is totally different from the 
behaviour of the conventional-average skewnesses, shown by Muck, which change 
from small values near the surface to peaks at y/S = 0.9-1 .O and then tend rapidly to 
zero: the negative values of cold-zone u-component skewness may possibly be 
contamination from the negative conventional values, caused by overestimates of 
the intermittency factor, but are fairly consistent at the different stations.) The 
cold-zone skewness of the w-component has a value of - 1.5 over most of the boundary 
layer upstream of the region of curvature, falling to nearly zero at the outer edge: 
a skewness factor of f 1.5 would be expected in an intermittent process consisting 
of triangular, rather than square, excursions from the baseline. In the presence of 
curvature, however, the cold-zone skewness factor of the v-component ranges from 
about -0.5 near the surface to +0.5 in the outer part of the boundary layer, a 
complete change of behaviour from that found on the flat surface. 

= (fi)c/(p)c and V7,c = ( u v " ) c / ( ~ ) c  
(figure 13) show, even more markedly than the conventional transport velocities, the 
usual feature of a rapid decrease from flat-surface values to near-asymptotic 
curved-surface values by the third measurement station, 390 mm from the start of 
curvature. The negative values are significant and are the result of transport of 
irrotational fluid towards the surface by entrainment processes. The difference 
between irrotational-zone and conventional-mean V-component velocity increases 
downstream, so the effect just mentioned would be largely hidden (or, strictly, 
regarded as a mean-flow effect) if the conditional averages were based on zonal-mean 
velocities as baselines. 

The cold-zone flatness factors of u and v (figure 14) are also of some interest. Before 
the start of curvature, the u-component cold-zone flatness factor is about 2 (compared 
to the Gaussian value of 3) in the inner half of the boundary layer, rising very 
considerably in the outer layer: the 'square-wave ' model would give a flatness factor 
of 1.0 everywhere. The large rise in cold-zone flatness factor in the outer part of the 
boundary layer disappears rather rapidly on the application of curvature, maximum 
values - in the region y/S A 0.9 - being only about 5. The v-component cold-zone 
flatness factor is about 2.5 in the inner half of the boundary layer upstream of the 
start of curvature, rising to about 6 in the region y/S 1 : curvature increases this 
value slightly in the inner part of the boundary layer, while the flatness factor in the 
outer part of the boundary layer decreases, though less rapidly than for u. 

Figure 15 shows the balance of turbulent energy, both upstream of curvature and 
a t  the most-downstream station on the convex surface. The pressure-diffusion and 
dissipation terms were not measured: the former was neglected and the latter was 
evaluated as the sum of the measured terms to balance the equation. In both cases 
the production and dissipation rates near the surface are roughly equal to the 
' local-equilibrium ' values u:/(Ky). (Ramaprian & Shivaprasad derived dissipation E 

from measurements of assuming the dissipating eddies to be isotropic, and 
their inner-layer values are far from the expected local equilibrium values, requiring 
implausible values of pressure diffusion to balance the equation.) In the outer part 
of the boundary layer, production and dissipation rates a t  given y/S are, if anything, 
increased by the application of convex curvature, but i t  is difficult to say whether 
the primary effect is on the energy-balance terms as such, or on the relation between 
true eddy lengthscales and the boundary-layer thickness arbitrarily defined as S,,,. 

The cold-zone transport velocities Vq, 
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Undoubtedly, the ‘diffusion ’ (i.e. turbulent transport by triple products and pressure 
fluctuations) and ‘ advection ’ are both considerably decreased by the application of 
curvature, as would be expected from the above discussion of the behaviour of 
Reynolds stresses and triple products: clearly, the decrease in Reynolds shear stress 
and the increase in aU/ay (see figure 2) have opposing effects on the production rate. 
Balances of the terms in the shear-stress transport equation are given by Muck, and 
will not be reproduced here : as usual, the mean and turbulent transport terms in the 
- shear-stress transport equation are quite small compared with the ‘ generation ’ term 
v2 a U/ay, and, like the corresponding terms in the turbulent-energy equation, become 
even smaller when convex curvature is applied. The dissipation-length parameter, 
L = ( - G ) t / e ,  and the corresponding parameter based on the turbulent energy, 
L, = (?)t /s ,  were evaluated by Muck for the last convex station only (see figure 18 
of 11), and both are reduced by about 40% from their flat-surface values, roughly 
following the behaviour of the mixing length, to which L is equal in local-equilibrium 
flow. 

When the present work was planned, i t  was expected that important clues to the 
behaviour of the large-eddy structure would be given by the probability density 
function of the lengths of the ‘hot ’ (turbulent) and ‘ cold ’ (irrotational) zones. In fact 
the zone-length probability distributions normalized by the boundary-layer thickness 
are very little affected by curvature and no distinct trend can be identified: 
quantitative results are given by Muck and, for the more interesting concave case, 
in 11. This null result, and the relatively small changes in the intermittency 
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distribution after the application of curvature, leads one to believe that the effect 
of stabilizing streamline curvature on turbulence structures is mainly a quantitative 
attenuation in intensity rather than a qualitative change in large-eddy configuration. 

4. Discussion 
The conventional-average Reynolds-stress profiles shown in figure 5 indicate that 

the response of turbulence to suddenly applied stabilizing streamline curvature is 
rather rapid, the decrease in turbulence intensity implying a preceding increase in 
the turbulent-energy dissipation rate, followed by a decrease in dissipation as the flow 
settles down at the new, lower, level of intensity. The different behaviour of intensity 
and of dissipation is not paradoxical, because the dissipation rate equals the rate of 
energy transfer from the larger eddies, and is usually modelled by some expression 
like (?)3/L, - which simply defines a length L, but indicates that dissipation depends 
on some form of turbulence lengthscale as well as on the intensity. A reduction in 
intensity can still be associated with an increase in 6 if L, decreases sufficiently, and 
both L, and its distant relative the mixing length do decrease considerably when 
stabilizing curvature is applied. As the turbulent intensity decreases, the dissipation 
rate falls again. 

In some previous experiments on strongly stabilized curved boundary layers (e.g. 
So & Mellor 1973 ; Smits, Young & Bradshaw 1979; Gillis et al. 1980; Gillis & Johnston 
1983), curvature was sufficiently large to attenuate the normal stresses greatly and 
to reduce the shear stress almost to zero, in the outer part of the boundary layer. 
As pointed out by Smits et al., the vanishing of the shear stress in axes which happen 
to be aligned with the local stream direction is not particularly meaningful: the 
partition of the stress tensor into normal stresses and shear stresses simply depends 
on the axes chosen. However, as remarked by Hunt & Joubert (1979), there may be 
a real distinction between the effects of mild streamline curvature, in which the 
Reynolds stresses are merely somewhat reduced, and ‘strong’ curvature in which the 
Reynolds stresses in the outer part of the boundary layer become negligible, so that 
what remains is an inner boundary layer - with a non-zero mean shear at  its outer 
edge - topped by a region with significant mean shear but insignificant Reynolds 
stresses. Smits et al. showed, however, that a boundary layer so attenuated by strong 
curvature recovered rather rapidly, the dimensionless structure parameters like the 
stress/intensity ratio recovering even more quickly than the absolute intensities. The 
general conclusion is that convex curvature basically attenuates the existing 
turbulence structure, perhaps producing significant preferential changes in structure 
parameters like the stress/intensity ratio, but that significant new types of eddy 
structure - or significant ‘centrifugal-wave’ motions - do not appear. One of the 
motivations of the present work was, was indeed, a search for centrifugal waves, 
inspired by the evidence of Castro & Bradshaw, but, as mentioned above, we found 
that quite sensitive measures of large-eddy structure like the intermittency profile 
and the zone-length statistics were very little altered by stabilizing curvature. The 
rapid response of boundary layers to suddenly applied stabilizing curvature, and 
fairly rapid recovery when the curvature is removed, are in strong contrast to the 
behaviour of boundary layers with concave (destabilizing) curvature as discussed in 
the companion paper 11. 

From the point of view of calculation methods, this rapid response to stabilizing 
curvature is to some extent a simplification since, to a reasonable approximation, 
structural parameters can be related directly to the local curvature. However, if 
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structural parameters in lengthscale transport equations (or the equivalent, such as 
dissipation-rate transport equations) are related directly to local curvature the 
response times implicit in these equations will be too long. That is, it may be advisable 
to model the effects of curvature solely in the Reynolds-stress equations, at  least 
partly as a dependence of the ‘rapid ’ part of the pressure-strain redistribution term 
in the Reynolds-stress transport equation on a suitable dimensionless curvature 
parameter. 

The effects of stabilizing curvature on the triple-product parameters, which appear 
in the turbulent transport term in the Reynolds-stress transport equations, is 
somewhat confused. As might be expected, the ‘ gradient-transport ’ diffusivities of 
shear stress and turbulent energy are strongly affected by curvature - though Gibson 
et al. show that they can be scaled as q2 v2/e instead of the more usual (p)z/e. More 
physically meaningful quantities like the bulk-transport velocities and the skewnesses 
are affected so little in the present experiment that the change could almost be ignored 
in calculation methods. However, Smits et al. found very large reductions in 
dimensionless triple products in a strongly curved stabilized boundary layer, and also 
found that the rate of response or recovery of triple products was much slower than 
that of the Reynolds stresses (see paper 11). The present configuration with 
SIR A 0.01 was chosen as representative of real-life flows over turbomachine blades 
and other highly cambered aerofoils : the large gap between the significant but mild 
structural changes in the present experiment and the overwhelming changes found 
in the work of Gillis & Johnston and Smits et al. on bend-like flows with 6 / R  = 0.1 
remains to be filled. 

_ _  

5. Conclusions 
The main conclusion of this paper and the companion paper I1 by Hoffmann, Muck 

& Bradshaw is that the effects of stabilizing and destabilizing curvature on turbulent 
shear layers are essentially different phenomena. The most obvious evidence is the 
very rapid response of a boundary layer to the application or removal of stabilizing 
(convex) curvature, as compared with the slow reaction to concave (destabilizing) 
curvature. Changes in turbulent-structure parameters on a convex surface, though 
interesting in detail and important enough to need special attention in turbulence 
models, are generally not very large (we exclude pseudo-turbulence parameters like 
mixing length and eddy diffusivity from this statement). The research community 
in general, and the present authors in particular, have been rather slow in coming 
to this conclusion, which is strongly hinted a t  by the totally different processes of 
laminar-to-turbulent transition on convex and on concave surfaces : in the convex 
case, the conventional (Tollmien-Schlichting) mode still occurs, perhaps slightly 
modified, while on concave surfaces the totally different TayloAortler mode 
appears. Similar conclusions presumably apply to the effects of stabilizing and 
destabilizing buoyancy, whose limiting cases are a fog and a thunderstorm respectively, 
although this does not seem to be explicitly recognized by meteorologists who use 
qualitatively similar, although quantitatively different, correlations for the effects of 
buoyancy of either sign. 
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